Saturday, April 5, 2008

Max Planck

Max Karl Ernst Ludwig Planck (April 231858 – October 41947) was a German physicist. He is considered to be the founder of quantum theory, and one of the most important physicists of the twentieth century.

Black-body radiation

In 1894 Planck turned his attention to the problem of black-body radiation. He had been commissioned by electric companies to create maximum light fromlightbulbs with minimum energy. The problem had been stated by Kirchhoff in 1859: how does the intensity of the electromagnetic radiation emitted by a black body(a perfect absorber, also known as a cavity radiator) depend on the frequency of the radiation (e.g., the color of the light) and the temperature of the body? The question had been explored experimentally, but no theoretical treatment agreed with experimental values. Wilhelm Wien proposed Wien's law, which correctly predicted the behaviour at high frequencies, but failed at low frequencies. The Rayleigh-Jeans law, another approach to the problem, created what was later known as the "ultraviolet catastrophe", but contrary to many textbooks this was not a motivation for Planck.

Planck's first proposed solution to the problem in 1899 followed from what Planck called the "principle of elementary disorder", which allowed him to derive Wien's law from a number of assumptions about the entropy of an ideal oscillator, creating what was referred to as the Wien-Planck law. Soon it was found that experimental evidence did not confirm the new law at all, to Planck's frustration. Planck revised his approach, deriving the first version of the famous Planck black-body radiation law, which described the experimentally observed black-body spectrum well. It was first proposed in a meeting of the DPG on 19 October 1900 and published in 1901. This first derivation did not include energy quantization, and did not use statistical mechanics, to which he held an aversion. In November 1900, Planck revised this first approach, relying on Boltzmann's statistical interpretation of the second law of thermodynamics as a way of gaining a more fundamental understanding of the principles behind his radiation law. As Planck was deeply suspicious of the philosophical and physical implications of such an interpretation of Boltzmann's approach, his recourse to them was, as he later put it, "an act of despair ... I was ready to sacrifice any of my previous convictions about physics."

The central assumption behind his new derivation, presented to the DPG on 14 December 1900, was the supposition that the electromagnetic energy could be emitted only in quantized form, in other words, the energy could only be a multiple of an elementary unit E = hν, where h is Planck's constant, also known as Planck's action quantum (introduced already in 1899), and ν is the frequency of the radiation.


At first Planck considered that the quantisation was only as "a purely formal assumption ... actually I did not think much about it..."; nowadays this assumption, incompatible with classical physics, is regarded as the birth of quantum physics and the greatest intellectual accomplishment of Planck's career (Ludwig Boltzmann had been discussing in a theoretical paper in 1877 the possibility that the energy states of a physical system could be discrete). The full interpretation of the radical implications of Planck's work was advanced by Albert Einstein in 1905—for this reason, the philosopher and historian of science Thomas Kuhn argued that Einstein should be given credit for quantum theory more so than Planck, since Planck did not understand in a deep sense that he was "introducing the quantum" as a real physical entity. It was in recognition of his monumental accomplishment that Planck was awarded the Nobel Prize in Physics in 1918.

The discovery of Planck's constant enabled him to define a new universal set of physical units (such as the Planck length and thePlanck mass), all based on fundamental physical constants.

Subsequently, Planck tried to grasp the meaning of the energy quanta, but to no avail. "My unavailing attempts to somehow reintegrate the action quantum into classical theory extended over several years and caused me much trouble." Even several years later, other physicists like RayleighJeans, and Lorentz set Planck's constant to zero in order to align with classical physics, but Planck knew well that this constant had a precise nonzero value. "I am unable to understand Jeans' stubbornness — he is an example of a theoretician as should never be existing, the same as Hegel was for philosophy. So much the worse for the facts, if they are wrong."[citation needed]

Max Born wrote about Planck: "He was by nature and by the tradition of his family conservative, averse to revolutionary novelties and skeptical towards speculations. But his belief in the imperative power of logical thinking based on facts was so strong that he did not hesitate to express a claim contradicting to all tradition, because he had convinced himself that no other resort was possible."

No comments: